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It is shown that the matrix elements between radial eigensolutions in a Cou­
lomb held of functions of the type rP exp (—qr) can be expressed explicitly by 
means of hypergeometric functions of two variables. The calculation is made 
separately for the non-relativistic and relativistic case. Recursion formulae con­
necting the matrix elements are discussed and specializations to discrete-discrete, 
discrete-continuous, and continuous-continuous transitions are given.

I. Introduction.

In quantum mechanical perturbation treatments one often has 
to evaluate matrix elements between the eigenstates of the 

Coulomb field. In point of fact, this problem arose as one of 
the first in wave mechanics in connection with the calculation 
of the intensity of the hydrogen lines1.

Other cases where one encounters Coulomb matrix elements 
are, e. g., the theory of bremsstrahlung, photocffcct, internal 
conversion, Auger effect, and Coulomb excitation, when one 
includes the Coulomb interaction in the unperturbed Hamil­
tonian.

In all these cases the integration over angles can be readily 
performed, giving the selection rules for the angular momenta. 
The remaining radial integral is generally of the type

00

\ Rt eqr rp R*  r2 dr,
Jo

where R is the radial eigenfunction in the Coulomb field be­
longing to either the discrete or the continuous spectrum. For 
p = i 1, Gordon2 has given general formulae for discrete­
discrete, discrete-continuous, and continuous-continuous tran- 

1*
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sitions. For a positive integer, p, the matrix elements may be 
obtained by means of recursion formulae. For p = — 2 and 
q = 0, one may use the equation of motion in the Coulomb 
field and reduce it to the case p = 1. For negative integers, 
p<— 2, the matrix elements are more difficult and have until 
now been calculated only in some special cases of discrete- 
continuous transitions.

It will be shown here that a quite general explicit expression 
for Coulomb matrix elements of the above mentioned types can 
be given.

Section II of this paper is concerned with the derivation of 
this explicit expression for non-relativistic matrix elements. In 
the next section, methods will be given by which it is possible 
to derive recursion formulae connecting different matrix elements 
of the aforementioned type. Section IV deals with the specializa­
tions of the general formulae for the cases of discrete-discrete, 
discrete-continuous, and continuous-continuous transitions. These 
expressions embrace the earlier calculations of Gordon and others, 
corresponding to special choices of the parameters. In the last 
section, we shall give the exact expression also for the matrix 
elements with relativistic Coulomb wave functions.

The application of the method introduced here to the theory 
of Coulomb excitation will be given in a following paper3.

II. Non-Relativistic Matrix Elements.

The non-relativistic eigenfunctions of a particle of charge Zjc 

in a Coulomb potential —— are in spherical coordinates r, 0, 
r

(A, r) = Nx, , Y,_ (0, <p) ß, (,/A). (1 )

xV; t is the normalization factor to be specified later; F; (0, 
are the normalized spherical harmonics. The radial wave func­
tion R, (r/Å) is a solution of the differential equation

d2R, 2 dR, 
dr2 + r dr = 0. (2)
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I and m arc the angular momentum quantum numbers. 2 is 
connected with the energy E and the mass m of the particle 
through

(3)

The K orbit radius a is given by

a = Z2me2, (4)

where Zt and Z2 have the signs of the charges.
The general solution of the radial equation (2) can be ex­

pressed by the confluent hypergeometric function 1F1 or by 
the Whittaker function M through*

* For the definition of these functions, see Erdélyi et al.: Higher Transcen­
dental Functions, McGraw Hill 1953, vol. I, chap. VI. This reference will here­
after be quoted as HTF.

** HTF, vol. II, chapter X.

R;(rM) = (2r/A),e-r';l1F1(/ + 1 + Å/a, 2 I + 2, 2r/A) 
= (2r/A)-1( + Vi(2 r/A)

= (_l)i(_2r/A)-1 JWÂ/o,1 + ./,(-2r/A).
(5)

A discrete spectrum E < 0 occurs only when a is negative, 
and one finds

Â = — na. (6)

n is the principal quantum number which can take on the values 
I + 1, Z + 2, ...., while the radial quantum number n' = 
n — I— 1 takes on the values 0, 1, 2, . . . . In the confluent 
hypergeometric function of formula (5) the first parameter is a 
negative integer, namely —n', and the radial wave function may 
be expressed by a Laguerre polynomial**
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The normalization is given by the condition \ | y I2 cPr = 1, i. e.

2 _ i 
(2Z+l)!n2 I' (n —Z—1)! (7)

For the continuous spectrum, E > 0, one has

The “Sommerfeld number” 77 is defined as 77 — — — .
h v

In all scattering phenomena this is a very important number, 
since it measures the strength of the interaction. For « 1 the 
interaction is weak and in the limit the Born approximation 
applies. For 77 » 1 one may similarly in the limit use classical 
concepts5, .

The quantities k — nw/h and v are the wave number and 
the velocity, respectively, at infinity.

The normalization is here

.V, Â = e-fx |r(z + i + ^)| , 
’ (2Z + 1)!

which makes the so-called Coulomb wave function

Fi = M, Â kr Fi (— 7ât)

real with lhe following asymptotic behaviour

F) = sin (kr — I — ol — 77 log 2 kr). (10)

The Coulomb phase <rl is defined as

ol = arg F(Z + 1 + z 77).

We shall now consider the radial matrix element of the 
following type
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GO

( /?, (/■/;,.) r'>e-’X (r/Az) r*  dr.

* HTF, vol. I, chapter VI.
** HTF, vol. I, chapter V.

*** In the derivation, one has to put limits to the parameters so that the integral 
representation (12) has a meaning. Once, however, we have got the closed formula 
(14) this must be true for any values of the parameters.

The formula (14) is a special case of a general formula for the integral of pro­
ducts of Whittaker functions given by A. Erdélyi7.

1'0
(11)

For its evaluation, we use an integral representation of the con­
fluent hypergeometric function*

Hereby one obtains, carrying out the integration over r,

(2 /,•+ 1)! (2 lf+ 1)! (2/2i)i<(2/2*)^(Z i + // + p + 2)!(-+^+  ̂

4+i-M+i4H+i4H+i+ï)

,»t ,.l 2,. 2,. 2; 2;
\ \du du uli+a (1—u)li ~¿ul' + ~a(l—(1 — ux — uy)~(li + lr + p + 3} '
•o <’o

X =------------- 22jj... — y = _____ .

l/2¿+l/2/’ + y IM; + 1/V + Q

(13)

The remaining double integral is just one of the integral repre­
sentations of the Appell function F2.**

/I 1 \ —(P+3)
y = Gí + ^/ + P + 2) ! æ ■ yf ! £ + + qj

-^2 Í + ^/ + P + 3, Z£■ + 1 + —, Z^ + 1 + , 2 Z£• + 2, 2 Z; + 2, æ, y V

\ a a /

By means of the functional equation for the F2 function 
(Appendix A5) one may give alternative formulae, e. g.,***
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with

T<b (I
/I 1 \~(P + 3)(_iy,+p+3 (il + Zz+/, + 2)^----gj

lf 4" p I- 3, -f- 1----- -, A + 1 + — , 2 Z¡ + 2, 2 // + 2, u, V
a a (Ha)

The generalized hypergeometric functions of two variables have 
been studied by several authors, the standard work on the sub­
ject being the monograph by Appell and Kampé de Feriet8. 
Some of the properties of these functions are given in the Ap­
pendix.

The radial matrix element is given by J through

(15)

III. Recursion Formulae.

One can derive a large number of recursion formulae which 
connect matrix elements with different values of /¡, If, and p. 
The general form of these recursion formulae can be determ­
ined from a theorem^ which states that any five F2 functions 
of the form

F2 (« + ß + n2, ß' + n3, y + n4, / + n5, x, y)

(where nr are positive or negative integers) are connected by a 
linear relationship. The coefficients are polynomials in x and z/. 
Since the matrix elements are proportional to an F2 function, 
also five matrix elements of the form

yrp + n, q
Aili + n', y + n"

are linearly connected.
If the F2 function is reduced to an Fx function, e. g., in the 

case Z¿ = If i (p + 1), already four matrix elements are con-
t Appell and Kampé de Fériet (ref. 8, chapter I) state that this theorem 

holds already for four F2 functions, but this does not seem to be true.
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nected in this way. In the case where the F2 function is reduced 
to an ordinary hypergeometric function, three will suffice. Since 
the above mentioned theorem holds for three ordinary confluent 
hypergeometric functions jfj, three radial Coulomb wave 
functions of the type 7?/ + n are connected by a linear relation. 
Some of the recursion formulae for the matrix elements can be 
derived from these recursion formulae. One has, e. g.,*

l + Or/?,= +H'rRt = 2 (2 / + 1) r/2 
la dr)

(/+1)2-G/u)27- r
(2 Z+2) (2 7+ 3) 2 '

(16)

Recursion formulae for Coulomb matrix elements can now 
be obtained by considering the following expression:

( [x1+H'‘ + } + x2+Hlf + x3~H,f+i + a:rR* t dr.
Jo' z

For the moment we leave the constant coefficients x4 to a-4 
undetermined. By partial integration in the first and fourth term 
and application of the recursion formulae (16) one obtains, by 
identifying the result with the direct evaluation

1 (7¿ + l)2 — (2,/u)2 jP q
A, (/, + 1) (2 Í, + 2) (2 Z, + 3) ''+ *'  ''

X 1 ('/+D2-(W
3V('/+l)(2//+2)(2Z/+3)

Q
If + 1

- [æi Gi + 1 + P) + æ2 7/ + a?3 (If + 1) + x4 (l¡ — p)] q

+ (x4 + x2 — x3 — x4) ( r7?z rpe qr (rR*i)  dr.
Jo ’ dr '

(17)

* These formulae can be derived directly from the properties of the 4F4 func­
tions (HTF, vol. I, chapter VI) or by the factorization method9.
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To get recursion formulae between Coulomb matrix elements 
we choose the xns so that the last term vanishes, i. e.,

æi + æ2 — æ3 — æ4 = 0 . (18)

In accordance with the parity selection rule one will often employ 
the further condition

In the resulting recursion relation we still have freedom in the 
choice of the ay/s. In particular, one can get a recursion for­
mula with p fixed by the extra condition

•7'1 Gi + P + 1) + æ2 + æ3 + 1) "J" ^4 (^i -- p) = 0- (20)

For q = 0, the relations containing p — 1 as well as p become 
singular for p = — 2, which illustrates the more complicated 
character of matrix elements of the quadrupole type, as com­
pared with that of dipole matrix elements.

Other recursion formulae may be obtained directly from the 
properties of the generalized hvpergeometric functions. An 
example will be given in connection with the theory of Coulomb 
excitation (II).

IV. Specializations.

In this section, we give a few examples of the reduction of 
the general formula (14) for the case q — 0, which is of special 
interest.

a) Discrete-discrete transitions.

In this case, the second and third parameters in the F2 func­
tion become negative integers, namely // + 1 — nf = — zq and 
If + 1 — iif = — n¡. The F2 function is then reduced to a poly­
nomial in x and y.10



Nr. 18 11

_ JM“»-3 4 ylf
+ nfl n2, n2 {2 1, + 1 )! (2 Z^+l)!

(21)

This formula contains, e. g., the matrix elements needed for the 
calculation of the intensity of hydrogen lines.

b) Discrete-continuous transitions.

Here, the parameter ß = /,• + 1 —n, — —n', will become a 
negative integer. The F2 function can, in this case, be reduced 
to a finite sum of ordinary hypergeometric functions (A 3).

with

X
2 irjf 

ni~ir]f

(22)

This formula applies, e. g., for the matrix elements occurring in 
the theory of electron emission by radioactive « — disintegra­
tion11.
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c) Continuous-continuous transitions.
In the general case, the F2 function cannot easily be reduced 

to more elementary functions. The matrix element is

Z1 (/¿ + 1 + ¡Vi) H I1 (1/ + 1 + ¡Vf) I e 2 (,A + ,0

Z?2 G¿ + // + P + 3, /,■ + 1 — iry, If + 1 - 2 + 2, 2/^ + 2, x, y),

where .r
Vf —Vi

, — 2and y —--------.
Vf — Vi

(23)

Since X + y > 1, it is essential for the application of this for­
mula to investigate the analytic continuation of the F2 function 
beyond the domain of convergence of the series expansion (Al). 
This problem will be treated in detail in (II) in connection with 
the theory of Coulomb excitation. In the case p = — 1 and 

= If, the F2 function is reduced directly to the usual hyper- 
geometric function (A6) and one obtains an expression which 
is identical with the formula of Gordon (loc. cit.).

V. Relativistic Matrix Elements.

fhe relativistic eigensolution for an electron in a Coulomb 
field —Ze\r is, in the notation of Rose and Osborn12,

where
Zx Zx> m~ 1l2,r\j, m> %1¡íiTY1 _r

T

with
ZX = | « | + V2 (sign x — 1 )

J = I * | — 7a

(24)
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and

The radial wave functions are solutions of the differential equa­
tions

where W is the total energy (including the rest energy). The 
solution may be written in the following form:

(26)

where AT; x is a normalization factor and

We have used the following abbreviations:

For the discrete spectrum W < me2, n is the radial 
quantum number taking on the values 0, 1 The quantum 
number N is then

iV = j/n2' + z2 + 2 ny (28)
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and the parameter Å becomes

z — ATa. (19)

The normalization is determined by the condition

qnpcPr = 1,

Gva)-’A
(30)

giving

/1(2y + l)p/(7i')! « ./
|/ 4A (zV-x) / 1 +

Ny, x

For the continuous spectrum IF > me2 the parameters 
have the following values:

(31)

where p is the momentum at infinity. The normalization is

(32)

which makes the wave function real with the following asymp­
totic behaviour:

I 1 1 / — sin \
\ff me2 \ cos / kr + p log 2 kr — ol + ô — — y (33)

The phases crz and ô arc defined by

= arg r (y + z??),

(34)

y + ip
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Since the relativistic wave functions are expressed by con­
fluent hypergeometric functions, the matrix elements of rp e~qr 
may be calculated in the same way as the non-relativistic matrix 
elements (formula 14). Here, we shall give the result only:

/(me2 + etWi) (me2 + e2 W/)

{e3(AT¿—Xi)(Nf—F2(yt + yz + p + 1, — nf, — nz, 2 + 1, 2 yf + 1, x, y)

(35)

e4 nf nz

«5 (M — xf) nf

e6 (AT; — xz) nf

F2(/i+7/+p + l>—nz + 1,2/i + l, 2yz+l,x, y) 

^(yi + yy + p + l,—nz+l, 2y¿+l, 2yz+ 1, x, y) 

^2(7í + 7/ + p + 1,— nf+ 1, — nf,2yi+ l,2yf + l,x, y)}.

The signs en are given by

(— — \ ¡+ +1 1£i = [+ +) £2 _ - +J £¡J ~ \+ +/
(36)

f+ - /+ +\
e4 = (- +) = 1

Further,

X =
2Mi

u
2/Az

(37)
1/Åi + 1/AZ + ry i/â,+ imz + 9'

With this formula one can, e. g., write down directly the internal 
conversion matrix elements.

Ackn oivledgements.

The authors are indebted to Mr. Jens Lindhard for many 
enlightening discussions and wish also to thank Professor Niels 
Boiir and Hrs. Aage Bohr and Ben Mottelson for their interest 
in this work.



16 Nr. 18

Appendix:
Some properties of the generalized hypergeometric 

function of two variables, F2.

The F2 function is defined by a series expansion

where

F2 (a, ß, ß', y, y' x
x \^Cim + nßmßn „

. y) - > . -, y , (Ai)
VmVn‘n'-n\

m, zi= 0

r (a + 7»)
J\a)

= a (n + 1) • • • • (a + zn — 1).

This double series has the following domain of absolute con­
vergence

I X I + I y I < 1. (A 2)

By summation over n, one gets an alternative series expansion

F2 (a, ß, ß', T, y' X, y) =
m^O

(A3)

The analytic continuation of the function F2 beyond the 
domain A 2 may be given by the integral representation

f2(«, ß, ß', y, y', x, y) =
r(y)r(ÿ) _

r(ß)r(ß')r(y-ß)r(y-ß')

\ idiidiui^ li>ß' “(1 — uy ß ’(1 —y)/ ß' — ux—vy) a 
«lo «lo

(A4)
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The integral representation has a meaning only when the fol­
lowing inequalities are fulfilled,

Reß > 0 Reß' > 0 Re(y _£)>() Re(y' — ß') > 0.

There exist three transformations corresponding to the Euler 
transformations of the ordinary hypergeometric functions,

The F2 function reduces, for special choices of the para­
meters, to a simpler function.

If the first index a is a negative integer, the series Al breaks 
off and the F2 function is thus a polynomial. The same is true 
when both parameters ß and ß' are negative integers. If only 
one of them is a negative integer, the series A3 reduces to a 
finite sum of ordinary hypergeometric functions. There exist also 
other special reduction formulae of which we use only

F2 ß, ß', ((, a, x, y) = (1 —x) (1 — y)

i (1 —æ)(l —y)

(A 6)
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